Eigenvalue Statistics of One-Face Maps

نویسنده

  • E. M. McNicholas
چکیده

We examine the adjacency matrices of three-regular graphs representing one-face maps. Numerical studies reveal that the limiting eigenvalue statistics of these matrices are the same as those of much larger, and more widely studied classes from Random Matrix Theory. We present an algorithm for generating matrices corresponding to maps of genus zero, and find the eigenvalue statistics in the genus zero case differ strikingly from those of higher genus. These results lead us to conjecture that the eigenvalue statistics depend on the rigidity of the underlying map, and the distribution of scaled eigenvalue spacings shifts from that of the Gaussian Orthogonal Ensemble to the exponential distribution as the map size increases relative to the genus.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Renormalization Analysis of Intermittency in Two Coupled Maps

The critical behavior for intermittency is studied in two coupled one-dimensional (1D) maps. We find two fixed maps of an approximate renormalization operator in the space of coupled maps. Each fixed map has a common relavant eigenvalue associated with the scaling of the control parameter of the uncoupled one-dimensional map. However, the relevant “coupling eigenvalue” associated with coupling ...

متن کامل

Staggered repulsion of transmission eigenvalues in symmetric open mesoscopic systems

Quantum systems with discrete symmetries can usually be desymmetrized, but this strategy fails when considering transport in open systems with a symmetry that maps different openings onto each other. We investigate the joint probability density of transmission eigenvalues for such systems in random-matrix theory. In the orthogonal symmetry class we show that the eigenvalue statistics manifests ...

متن کامل

Central limit theorem for linear eigenvalue statistics of orthogonally invariant matrix models

We prove central limit theorem for linear eigenvalue statistics of orthogonally invariant ensembles of randommatrices with one interval limiting spectrum. We consider ensembles with real analytic potentials and test functions with two bounded derivatives.

متن کامل

Glauber dynamics in a zero magnetic field and eigenvalue spacing statistics

We discuss the eigenvalue spacing statistics of the Glauber matrix for various models of statistical mechanics (a one dimensional Ising model, a two dimensional Ising model, a one dimensional model with a disordered ground state, and a SK model with and without a ferromagnetic bias). The dynamics of the one dimensional Ising model are integrable, and the eigenvalue spacing statistics are nonuni...

متن کامل

Preservers of eigenvalue inclusion sets

For a square matrix A, let S(A) be an eigenvalue inclusion set such as the Gershgorin region, the Brauer region in terms of Cassini ovals, and the Ostrowski region. Characterization is obtained for maps Φ on n × n matrices satisfying S(Φ(A) − Φ(B)) = S(A − B) for all matrices A and B. From these results, one can deduce the structure of additive or (real) linear maps satisfying S(A) = S(Φ(A)) fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009